

醫學博士 **竹內修一** 監修濱松大學健康生產學院院長

本書的用法

頭蓋骨

頭蓋骨的種類

構成頭部有15種共23塊的頭蓋骨,可製造顏面結構,保護腦部。頭蓋骨可大致分爲構成頭部的<mark>點斷骨</mark>(神經頭蓋),以及構成臉部的**頭面骨**(內臟頭蓋)。

其中腦顱骨由額骨(前頭骨)、枕骨(後頭骨)、蝶骨、篩骨、頂骨(頭頂骨2塊)和顳骨(側頭骨2塊)構成,形成可容納腦部的顱腔。腦顱骨這8塊骨骼緊密結合,以防腦部受到衝擊。

而顏面骨則由成對鼻骨、淚骨、上頷骨、下鼻甲、顴骨、齶骨、犁骨、下頷骨和舌骨(共15塊)所構成。

顧腔上面的圓頂部分稱爲<mark>頭蓋冠</mark>,底部爲頭。 。枕 骨於顯部的部分向前彎曲,構成頭蓋底的一部分以支撑腦 部,中央有一個大<u>洞稱</u>圖 ,可讓腦部的延髓通過連接 脊髓。

紅色暗記物體的骨骼

50

8

(1塊)

收納眼球的顏面凹陷處稱爲 : 眼窩由額骨、篩骨、蝶骨、顴骨、上頷骨、淚骨和齶骨共7塊骨骼構成。

人 米百百万百百 开门手代 对大手代生市

從上面觀看頭部,頭前從的、度稱為頭長,從耳朵上面測量的左右頭長稱為亞堡。如後網長的頭稱為是頭,前 後渾團的頭稱為短點。其中前後細長的頭(長頭)也常被 稱為才健康,但隨著時代的改變,這種頭型已不多見,稱 為短頭化現象。

丽蒌幂

為讓新生兒通過產道或成 長,頭蓋冠呈纖維狀且可 以移動。

名詞解釋

延髓

腦幹(腦部最下側)中最 末端的部分。

脊髓 •••••

銜接延髓下面的部分,位 於脊柱管内:和腦與脊髓 合稱為中樞神經。

身體小常識

頭蓋骨

也稱為顧骨;已經白骨化 的頭蓋骨稱為骷髏。

■ 重要用語會被■ 紅色暗記板遮掉

重要用語用紅字標示,若用 紅色暗記板遮住内文,重要 用語會被遮掉。此外,請參 考其補充說明。

2解釋内文的專有名詞

會說明內文的專有名詞或比較陌生的用語。

3介紹其他的知識

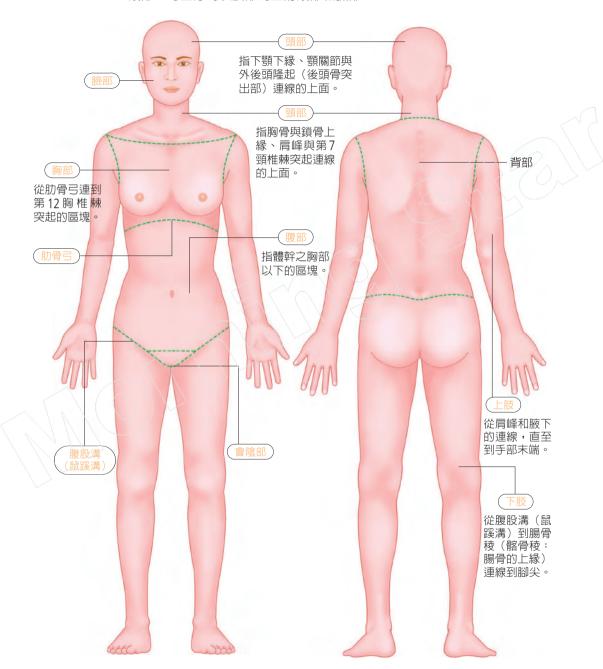
會介紹跟内文用語有關的小 常識。

4介紹相關的

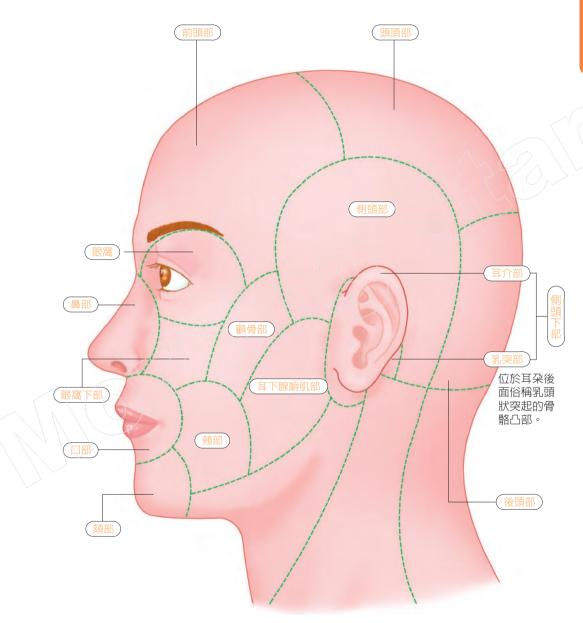
會用紅色箭頭標示有詳細說 明的頁碼。

(1塊) (1塊) (2塊) (1塊) (2塊) (2塊) (2塊)

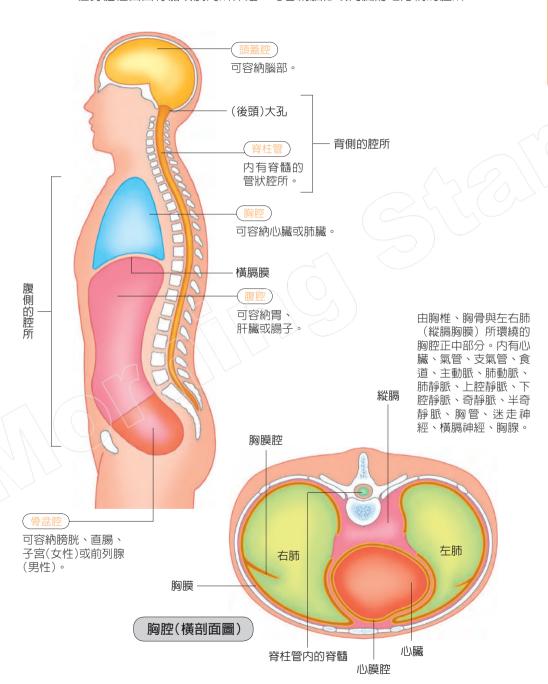
重要用語會消失!


5透過彩色的插圖解說

利用清晰且精緻的插圖說明人體的結構。


全身的區分

人體可藉由骨骼或肌肉等體表的凹凸感區分為許多區塊。 頭部,可區分為以腦部為主的頭部和臉部。


頭部的部位名稱

頭部可依前、後等方向分為不同的區塊。

身體的腔所

在身體裡面由骨骼或肌肉所保護,可容納腦部或内臟的地方稱為腔所。

組織

組織

上皮組織

覆蓋於體表、腸道或氣管這類管狀臟器的内面,以及胸腔與腹腔内面的黏膜即為上皮組織,乃上皮細胞緊密排列的組織。按照上皮細胞的排列方式可分為扁平上皮(單層與複層)、立方上皮、柱狀上皮、纖毛上皮、多列上皮與變移上皮。

單層扁平上皮

細胞如壓扁似的扁平狀, 單層排列於基底膜上(血管、淋巴管内皮等)。

扁平上皮

複層扁平上皮

細胞如壓扁似的扁平狀, 互相重疊多層排列於基底 膜上(表皮、食道上皮、 氣管上皮等)。

立方上皮

細胞呈立方狀 (汗腺上皮等)

柱狀上皮

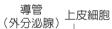
000000

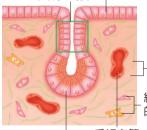
細胞呈縱向的長圓柱形(胃、小腸、大腸、子宮等的黏膜上皮)

纖毛上皮

細胞上有纖毛 (鼻腔上皮、咽頭上皮等)

多列上皮




數列細胞排列於基底膜上

何謂腺體?

上皮組織進入結締組織後,可分泌某 些物質的組織。

- 有腺體與導管
- ……外分泌腺(⇒P214)
- 沒有導管,在周遭的血管分泌所謂的荷爾蒙
- ……内分泌腺(⇒P214)

_結締組織 的纖維

_ 結締組織 - 的細胞

| 毛細血管 腺細胞 (微血管)

變移上皮

由表層、中間層和基層 3 層所構成 (膀胱、尿道的上皮等)

PART _____

全身的骨骼

構成人體的基礎

所謂的骨骼即爲貫穿人體的主軸,也是構成人體的基礎器官;人體大概由200多塊形狀不一的骨骼所組成。

這些骨骼加上肌肉可活動身體,或幾塊骨骼組合後即成爲袋狀物,可容納內臟並保護柔軟的內臟。

體幹與肢體的骨骼

人體的骨骼可大致分爲體幹(含頭部)和肢體。體幹上的骨骼有<mark>頭蓋骨(23塊)、脊柱(26塊)和胸廓(25塊);而肢體上的骨骼有上肢(64塊)和下肢(62塊)。</mark>

其中體幹有很多內臟,故骨骼會組合為袋狀物收納這些內臟。身體的背側從頸部到臀部由**脊柱**貫穿,成爲身體的主軸。從脊柱稍往水平的方向移動,就是左右呈半圓伸展的骨骼——肋骨;而身體腹側與胸骨銜接形成胸廓。

另一方面,肢體上的骨骼跟主軸上的骨骼用可互動的 模式銜接(關節),周遭還長滿了肌內。這些肌內可以透 過收縮來活動骨骼,促成手腳的運動。

重要用語

體幹

擁有維持生命必要的所有 器官,為身體的中心,可 分為頭部與驅體。

肢體

從體幹左右延伸出去的兩 組骨骼,分為上肢(手與 臂部)和下肢(足與腳 部)。

名詞解釋

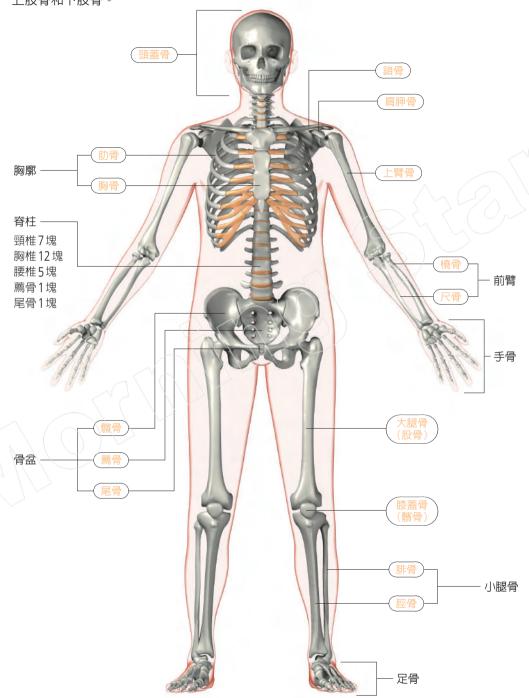
肌肉

主要透過收縮產生力道的組織。

内臟

身體内部可以取出或某種 程度上獨立的器官,主要 有消化系統、呼吸系統、 泌尿系統、生殖系統與内 分泌系統等器官。

臀部


指屁股的部分。在醫療機 關中常寫作「殿部」。

骨骼的各種功能

支撐人體	骨骼擁有強韌的組織,可成為支撐各種器官的主軸,構成人體的形狀。
保護内臟	骨骼可做不同的組合,成為收納大腦或内臟等脆弱器官的袋狀物並加以保護。
活動身體	骨骼上面的肌肉具收縮性,與骨骼的連結部分為基點,活動身體各個部位。
製造血液	骨骼内部的腔洞裝滿骨髓,而骨髓可以製造紅血球、白血球和血小板。
儲存鈣或磷	骨骼可以儲存身體運作不可或缺的鈣或磷。當血液裡的鈣或磷不足時,可透過 荷爾蒙作用釋出於血液中。

人體的骨骼(正面)

人類全身的骨架約由 200 塊骨頭結合而成,從上到下可分為頭蓋骨、脊柱、胸廓、骨盆、上肢骨和下肢骨。

骨骼的分類① 頭蓋骨、脊柱、胸廓

以下將體幹與肢體的骨骼做更細部的區分。

- ◎頭蓋骨 指整個頭骨,由23塊骨骼構成。可保護重要的腦部,並支援臉部的結構。
- ◎脊柱 一般稱作「背骨」,貫穿身體的軸心,由俗稱推 骨的短骨上下連結而成,可細分爲頸椎(7塊)、胸椎 (12塊)、腰椎(5塊)、薦骨(1塊)和尾骨(1 塊)。其中胸椎由肋骨與胸骨構成胸廓,而薦骨、尾骨 和髓骨則構成疊盆。

骨骼的分類② 上肢、下肢

- ◎上肢骨 體幹與上肢結合處爲上肢帶(含肩胛骨與鎖骨)。而上臂骨、橈骨、尺骨等與手骨合稱爲上肢骨。
- ○下肢骨 體幹的底部由骨盆所支撐。

骨盆則由脊柱最下面的<mark>薦骨</mark>與尾骨,以及左右展開如薄 扇的<mark>體骨</mark>所構成。

體骨再加上大腿骨、腓骨等足骨合稱為下肢骨;如同上 肢骨一樣,體幹與下肢骨結合處稱為下肢帶,體骨也屬 於這裡。

重要用語

體幹

→ P26

肢體

→ P26

上肢骨、下肢骨

上肢骨中,可連接上肢帶的上臂骨和前臂骨(橈骨、尺骨)、手骨(腕骨、掌骨、指骨)特稱為自由上肢骨。

同樣在下肢骨中,可連接下肢帶的大腿骨和小腿骨 (脛骨、腓骨)、足骨 (足根骨、中足骨、趾骨)特稱為自由下肢骨。

身體小常識

骨盆

這是男女差異最明顯的骨頭之一:法醫可由骨盆的 結構輕易鑑定出性別。

骨骼的形狀可分為4種

骨骼的大小或形狀非常多樣化,但可大致分為以下4種。

長骨

如大腿骨、鎖骨、 指骨、上臂骨等, 主要位於肢體上的 長管狀骨頭。

短骨

如 腕 骨、足 根 骨等,短且形狀不規則的塊狀骨頭。

開工品

如肩胛骨、頂骨等 形狀扁平的骨頭。

含氣骨

如額骨、上額骨等 裡面含空氣的空洞 狀骨頭。

頭蓋骨

頭蓋骨的種類

構成頭部有15種共23塊的頭蓋骨,可製造顏面結構,保護腦部。頭蓋骨可大致分爲構成頭部的腦顱骨(神經頭蓋),以及構成臉部的顏面骨(內臟頭蓋)。

其中腦顱骨由額骨(前頭骨)、枕骨(後頭骨)、蝶骨、篩骨、頂骨(頭頂骨2塊)和顳骨(側頭骨2塊)構成,形成可容納腦部的顱腔。腦顱骨這8塊骨骼緊密結合,以防腦部受到衝擊。

而顏面骨則由成對鼻骨、淚骨、上頷骨、下鼻甲、顴骨、齶骨、犁骨、下頷骨和舌骨(共15塊)所構成。

顱腔上面的圓頂部分稱爲<mark>頭蓋冠</mark>,底部爲<mark>頭蓋底。枕</mark>骨於頸部的部分向前彎曲,構成頭蓋底的一部分以支撐腦部,中央有一個大洞稱爲大孔,可讓腦部的延髓通過連接脊髓。

眼球周遭的骨骼

收納眼球的顏面凹陷處稱爲眼窩;眼窩由額骨、篩骨、蝶骨、顴骨、上頷骨、淚骨和齶骨共7塊骨骼構成。

重 要 用 語

頭蓋冠

為讓新生兒通過產道或成 長,頭蓋冠呈纖維狀且可 以移動。

名詞解釋

延髓

腦幹(腦部最下側)中最 末端的部分。

脊髓

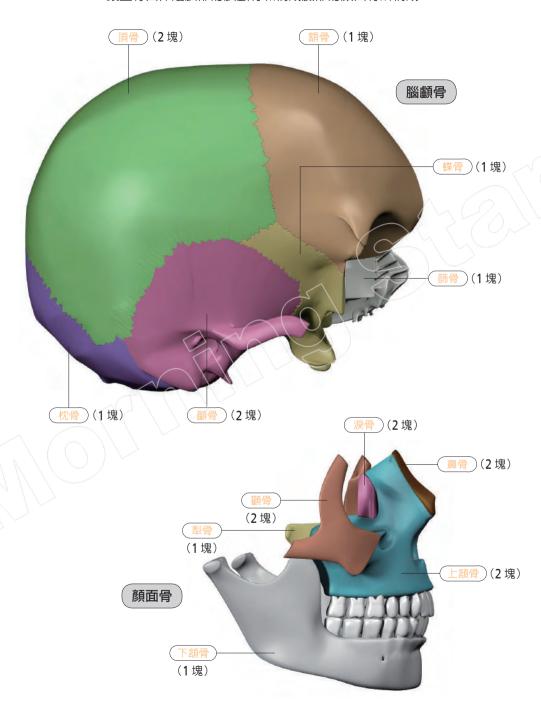
銜接延髓下面的部分,位 於脊柱管内;和腦與脊髓 合稱為中樞神經。

身體小常識

頭蓋骨

也稱為顱骨;已經白骨化 的頭蓋骨稱為骷髏。

LABORATORY


人類的頭型越來越短

從上面觀看頭部,頭前後的長度稱為頭長,從耳朵上面測量的左右頭長稱為頭寬。前後細長的頭稱為長頭,前後渾圓的頭稱為短頭。其中前後細長的頭(長頭)也常被稱為才槌頭,但隨著時代的改變,這種頭型已不多見,稱為短頭化現象。

構成頭蓋骨的骨骼

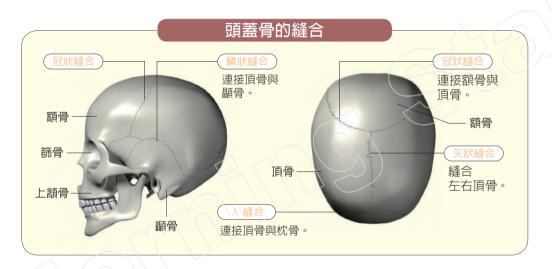
頭蓋骨由保護腦部的腦顱骨和構成臉部的顏面骨所構成。

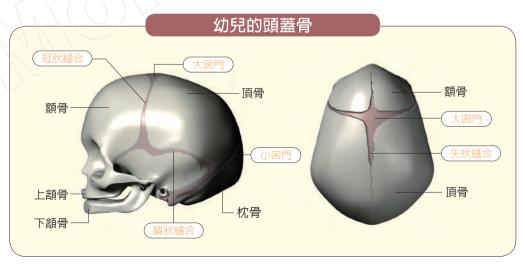
頭蓋骨的連結

頭蓋骨連接很多骨骼構成頭部或顏面,其連結的方式 幾乎都屬於不動性,以構成堅固的頭部:但下頷骨和舌骨 例外。下頷骨構成頭蓋唯一的關節—<u>罰關節</u>,**舌骨**則與其 他骨骼獨立,透過韌帶或肌肉連接其他骨骼。

形成圓頂狀頭蓋冠的骨骼連結線呈鋸齒狀,看似縫線,故稱爲**縫**合;每個部位有不同的縫線名稱。

若由頭骨前方往後走,連接左右頂骨的縫線稱爲矢狀


重 要 用 語


下頷骨

與上頷骨成對,乃最大的 顏面骨。

舌骨

位於下顎與咽頭間的U字型小骨。沒有關節,由頸部的肌肉所支撐。

消化器官的構造

消化與吸收

生物體爲了延續生命,必須從食物攝取各種營養素。 但是,營養素本身的分子過大無法爲人體吸收,必須先分解以縮小分子。這種在體內將食物分子分解的過程稱爲消化,由口腔、食道、胃、小腸與大腸所連成的消化道負責。再者,讓消化之食物營養素進入體內的過程稱爲吸收,主要由小腸等負責。肝臟則負責將消化道所吸收的營養素進行化學處理,便於人體利用。

消化分為機械性消化與化學性消化。機械性消化就是 將食物磨碎成液狀或粥狀,等同於在口腔咬碎食物,在胃 部攪拌搗碎這些內容物。而化學性消化即透過各器官所分 泌之消化液中的酵素,將營養素再次分解。而負責兩種消 化作用的器官總稱爲消化器官。

消化道的構造

從口腔延伸至大腸的消化道,為內部中空狀的中空性器官,由黏膜層、肌肉層與漿膜層這3層管壁所構成。黏膜層從口腔通到直腸,為消化道的最內層。肌肉層主要由平滑肌構成,根據肌纖維的走向可分為環走肌與縱走肌2層。至於漿膜層為包覆內臟的半透明薄膜,可分泌漿液避免與其他器官摩擦。

而保持一定間距的環走肌與縱走肌,可反復收縮與舒 張進行蠕動運動,並將從口腔進入體內的食物送到肛門, 同時進行**鐘擺運動或分節運動**,攪拌並分解食物。

另一方面,肝臟、胰臟或唾液腺等體內<mark>實質性器官</mark>, 爲分解與吸收食物,會釋出含酵素等物質的分泌物。

名詞 解釋

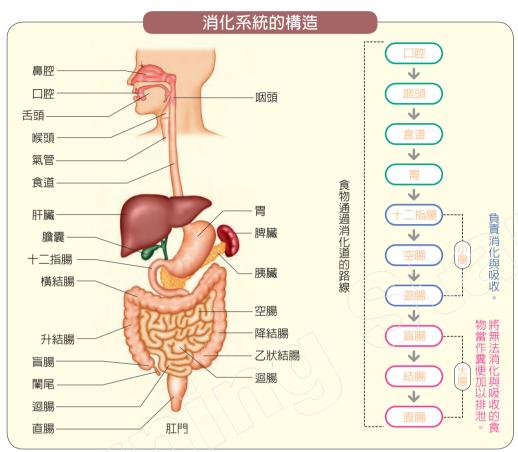
營養素

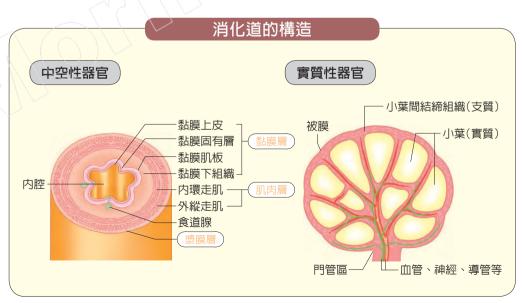
身體為吸收營養所攝取的物質。生物會從外界吸收養分於體內進行代謝,當作構成生物體之物質的原料或當作能量來源。

分子

製造物質之最小粒子,通常可結合成原子。

酵素


跟生物消化、吸收、輸送、代謝或排泄物質的所有過程中都有所關聯的分子。亦即,變化物質時不可缺少的酵素,大致由蛋白質所構成。


口腔

⇒P82

蠕動運動

指腸子的環走肌與縱走肌 像毛毛蟲般蠕動,將進入 腸子的食物送往肛門的運 動,由自律神經所支配。

口腔

口腔的構造與功能

□腔是指上齶、左右臉頰與下顎圍成的空間,舌頭突 出於下顎。□腔前方可由嘴唇(□唇)緊閉,後方則有俗 稱□峽的狹窄空間,與咽頭做一區隔。

口腔裡除了牙齒咀嚼食物進行機械性消化的同時,唾液腺也會分泌含消化酵素的**唾液**,進行化學性消化(→ P80)分解部分的碳水化合物。再者,口腔也能透過舌頭感受食物的味道。

咀嚼與唾液腺

於上下齒列間咬碎食物的動作稱爲<mark>咀嚼</mark>,屬於消化的 第一階段,也是感受味覺的動作。咀嚼時爲避免食物跑出

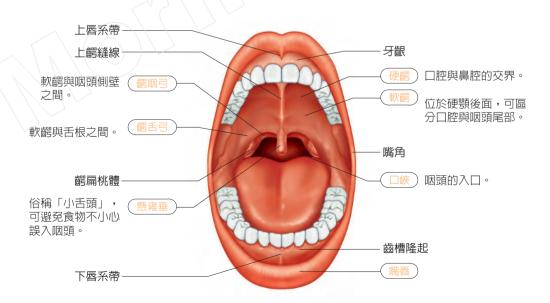
重要用語

上点

口腔上方的組織。前方3 分之2為硬齶,後方為軟 齶。硬齶有上頷骨與上齶 骨,軟齶內側無骨偏軟。

服頭

→ P88


名詞 解 釋

咀嚼

咬碎並品嚐食物的動作。

口腔各部位的名稱

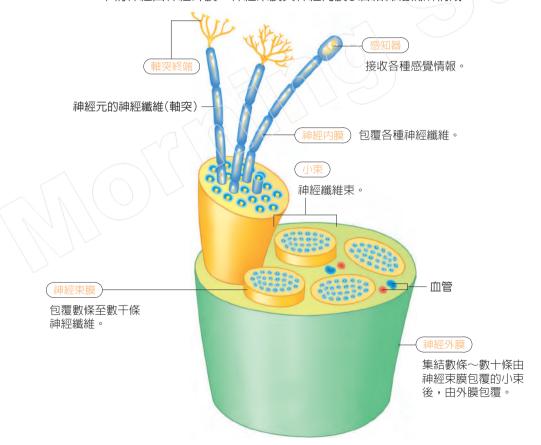
所謂的口腔是指消化道的起點,約嘴唇到口峽一帶。

神經與神經傳達

傳達情報的領導者

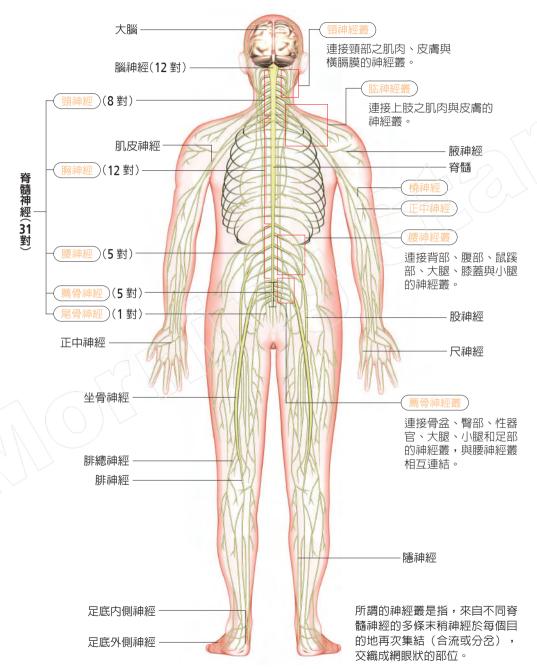
人類備有<mark>神經系統</mark>,可適當對外界的刺激做出反應而 活動身體。不管是看東西、聞味道、記住事物或加以記 憶,通通都是這種神經系統傳達各種情報的結果。

神經系統由神經組織構成,可大致分成由腦與脊髓構成的中樞神經系統,以及由腦神經、脊髓神經和自律神經構成的末梢神經系統(周邊神經系統)(➡P180)。


名詞解釋

情報傳達

神經元(神經細胞;神經 組織的基本單位)透過突 觸這樣的接點相連。來自 視覺、聽覺、嗅覺等的刺 激,被轉為電氣信號(脈 衝),從神經細胞經軸 突、樹突傳到大腦。


末梢神經的構造

末梢神經由神經外膜、神經束膜與神經内膜3層結締組織所構成。

神經的網路

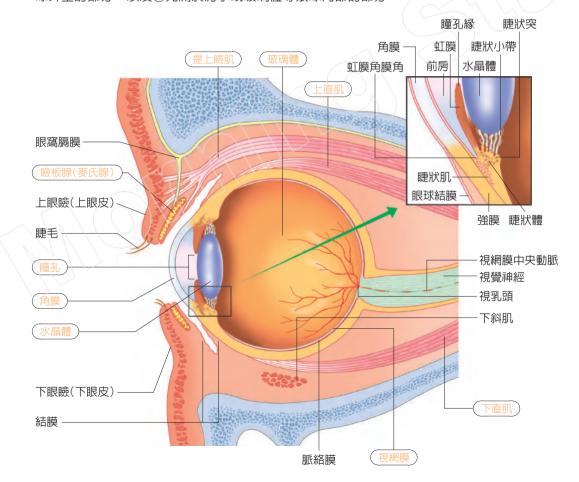
從腦延伸出的 12 對腦神經與來自脊髓的 31 對脊髓神經所構成的末稍神經,可連接中樞神經系統(腦與脊髓)及身體各部位。中樞神經控制整個神經系統,而末梢神經則如纜線佈滿全身,接收各種訊息與指令。

眼睛

眼球的構造

眼球正好嵌落在頭蓋骨的凹陷處一眼窩裡,爲直徑約2.5cm的器官,跟視覺機能有關。

而佔據眼球壁3層構造之最外層後方6分之5的是俗稱**鞏膜**,看似白色的不透明膜組織(所謂的眼白部分)。


重 要 用 語

眼窩

為四角椎體狀的大凹陷, 内側有讓視神經或血管等 通過的孔洞或裂□。

眼球與其周遭的構造

眼睛的構造可大致分成①角膜或虹膜等屈折或調節光線的部分、②視網膜或脈絡膜等眼球外壁的部分,以及③充滿於房水或玻璃體等眼球内部的部分。

只有前面的黑眼珠部分呈透明狀,被稱爲角膜。

眼球壁中層俗稱脈絡膜,有許多血管分布。脈絡膜在 眼球的前方形成虹膜與睫狀體。虹膜是指環繞黑眼球中央 之瞳孔的甜甜圈狀部分,如同相機的快門開關一樣,可調 節從瞳孔進入的光線量。東方人的話因黑色素較多,虹膜 看起來是褐色。而睫狀體位於虹膜後面,透過睫狀小帶連 接瞳孔內部的水晶體,可調整水晶體的形狀與厚度,以取 得看物體時最適當的焦距。

至於眼球壁最內層爲<mark>視網膜</mark>,有感受光線的<mark>視覺細胞</mark>,或將看到的影像映入眼簾。視網膜連接<mark>視神經</mark>,可將看到的影像送到腦部的視覺中樞。

眼球內部呈透明狀,可分爲水晶體、<mark>眼房</mark>(水晶體與角膜間,充滿房水)和<mark>玻璃體</mark>(水晶體後面,佔據大部分眼球腔的膠狀物質)3部分。

流淚的機制

位於上眼瞼之眼尾的淚腺可製造<mark>淚液</mark>(淚水),於眨眼的瞬間上下流通淚液,滋潤<mark>角膜</mark>。淚液是從眼角的淚點 進入<mark>淚小管</mark>、袋狀管似的淚囊,再經鼻淚管流進鼻腔。

重要用語

脈絡膜

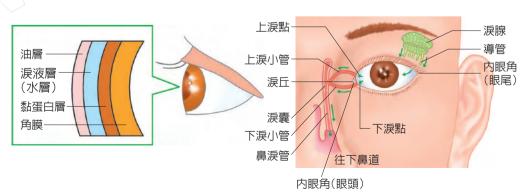
脈絡膜裡的血管不僅可幫 眼球或視網膜補充氧氣和 養分,還能運送眼球裡的 老舊廢物。

瞳孔

光量會改變瞳孔的大小 (約為 $2\sim8$ m m 的 差 異)。人剛往生時,醫師 會用光照射眼睛,就是要 評估瞳孔對於光的反應以 確認死亡。正常的話,雙 眼瞳孔的大小應該一樣。

虹膜

相當於眼球的黑眼珠。虹 膜的模樣因人而異,故也 可用虹膜認證作為個人認 證,常用於科技產品的認 證。


身體小常識

視網膜剝離

指脈絡膜與視網膜分離, 或脈絡膜受損導致視網膜 功能惡化等狀態。

流淚的機制

眼睛的表面總是充滿了淚液。淚腺由感覺神經、交感神經與副交感神經所控制,感動時 副交感神經會發揮作用,難過時交感神經會發揮作用流出眼淚。

内分泌器官與荷爾蒙

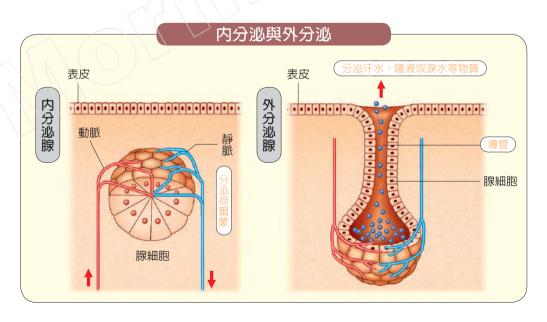
何謂内分泌器官?

我們的身體擁有可對特定器官發揮作用的物質(荷爾蒙=激素),以及可分泌這些物質的器官—內分泌器(內分泌腺)。像汗水或唾液,可從汗腺等的分泌腺通過導管,流入體表或臟器內部(外分泌)。但內分泌腺不像外分泌腺擁有專用的導管,而是將分泌物透過血液或淋巴液輸送,稱爲內分泌。

亦即,荷爾蒙會被釋出於血液中,透過血液循環送到 以此荷爾蒙爲目標的器官或組織。像這樣分泌這些荷爾蒙 的腺體組織或臟器總稱爲內分泌器官。

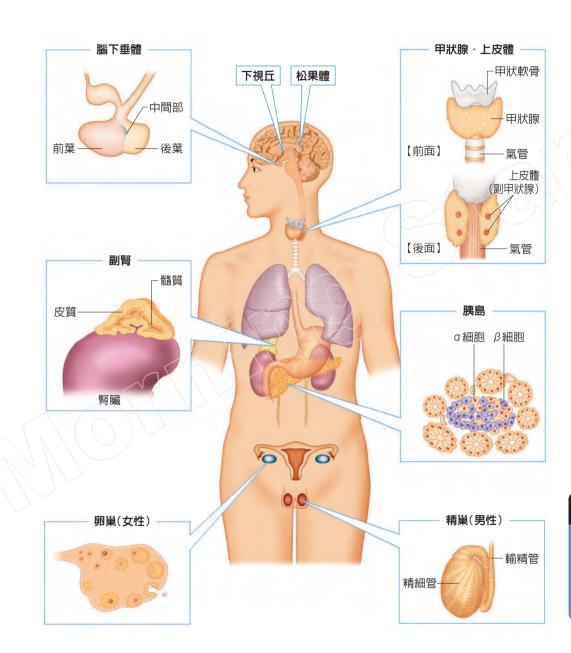
人體各種器官的活動,可藉由維持體內<mark>恒常性</mark>(維持正常機能的機制=<mark>恒定狀態</mark>)的機構進行調整。而神經系統與內分泌系統皆擁有這種調整功能,兩者會經常協調與相互合作。

像內分泌系統可將俗稱荷爾蒙的情報傳達物質釋出於


重 要 用 語

内分泌器官

周遭的組織有很多血管分 布,故内分泌腺所分泌的 物質(荷爾蒙)很容易就 進入這些組織中。


恒定狀態

即使身體的內部或外部環境出現變化,其生理狀態仍維持一定的一種生物特質或狀態。如讓體溫或血壓保持一定的狀態。

内分泌器的分布(局部)

可以合成與釋出荷爾蒙的內分泌器(內分泌腺),全身都有。

荷爾蒙受體

№ 更多精采內容

何謂受體?

當荷爾蒙發揮作用時,需要可以接收它的視窗,這個視窗就稱爲荷爾蒙受體。

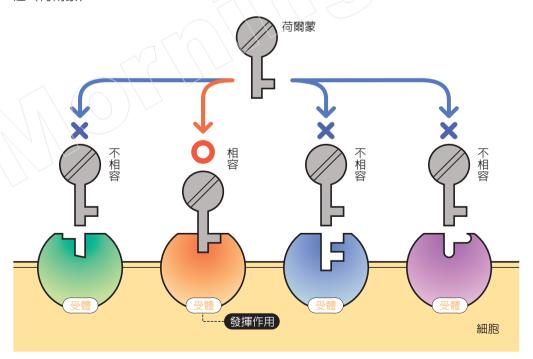
所謂的<mark>受體意指標的器官</mark>之細胞膜或細胞質內的<mark>蛋白質。對這種蛋白質具有高度親和力</mark>的神經傳達物質或荷爾蒙等生物活性物質,藉由特異性結合將情報傳給細胞,進而引發生物活性物質特有的反應。

爲何荷爾蒙只針對標的器官有所反應?這是因爲標的 器官才有能接收這些荷爾蒙的受體。換句話說,荷爾蒙和 受體等於鑰匙與鑰匙孔的關係。

重要用語

親和力

指容易跟某種物質結合的 性質或傾向。荷爾蒙受體 親和力強,但神經傳達物 質的受體親和力低。


名詞 解釋

神經傳達物質

指於神經細胞(神經元)間傳送情報的化學物質。

能接收荷爾蒙的受體

荷爾蒙與受體的關係宛如鑰匙與鑰匙孔。標的器官上的鑰匙孔只能接受跟它相符合的鑰 匙(荷爾蒙)。

