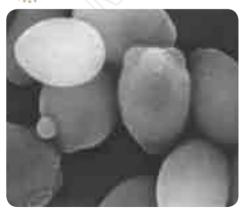


酒是加了酒精(乙醇)的飲料。清酒、啤酒、燒酎調酒(燒酎加汽水調成的調酒)罐上都有標示酒精度數,各位曾注意過嗎?日本酒稅法規定,酒精濃度達1度,也就是酒精含量在1%以上的飲料就是酒。(註:台灣菸酒管理法規定,酒精濃度達0.5度,也就是酒精含量在0.5%以上的飲料就是酒。)最近市面上常見的無酒精啤酒或無酒精葡萄酒,其實是酒精含量不到1%的飲料;酒精濃度很低,但是易醉體質的人喝了也是會醉的。

酒可依製造方法分為「釀造酒」與「蒸餾酒」兩大類。清酒、

晨星網路書店看更多▶

啤酒、葡萄酒屬於釀造酒;燒酎、威士忌、白蘭地、白色烈酒屬於蒸餾酒。味醂、合成清酒、粉末酒等,屬於混合釀造酒,或是用蒸餾酒製成的酒類。啤酒和氣泡酒都屬於發泡性酒類。


什麽是釀造酒?

人類和酒的際遇可以追溯到西元前的久遠時代。西元三千年前極為繁盛的美索布達米亞文明及埃及文明,都曾留下和葡萄酒、啤酒有關的物品或紀錄。那時,人類不過才剛剛開始使用文字而已。

釀造酒以米、麥或葡萄為原料釀製而成。例如葡萄酒,就是將葡萄果實放置一段時間,直到自然發泡,幾天以後便可累積到某種程度的酒精含量。而那酒精,是附著於葡萄果皮表面的酵母菌製造的。酵母菌會分解果實中的糖分以獲得養分,過程中會分解出二氧化碳和酒精;這個現象稱為「酒精發酵」。所以人類是在還不知道有酵母菌存在的時代,就已經知道利用酵母菌的酒精發酵能力來釀造清酒、啤酒或葡萄酒了。

顯微鏡下的酵母菌

這是放大4500倍的酵母菌。酵母 菌是卵形的單細胞微生物,只有 幾微米大,機能卻精密得驚人。 直到路易·巴斯德的研究證實,人類才了解酒精發酵原來是酵母菌的生命現象。巴斯德是法國的生化學家,因開發出狂犬病疫苗,以及對防止葡萄酒和啤酒腐敗相當有效的「低溫滅菌法」(註:將物質加熱到65℃30分鐘或72℃15分鐘,接著迅速冷卻到10℃以下,就可以不破壞營養成分,又能殺死細菌。)而聲名大噪。不過在巴斯德發表利用低溫加熱滅菌的方法以前,日本早在安土桃山時代(譯註:西元1568~1603年)就懂得這方法了。日本酒容易腐敗,低溫加熱即是不可或缺的防腐作業。

酵母菌無法直接利用稻米等穀物中的澱粉進行酒精發酵。所以 釀造啤酒或威士忌時需要利用麥芽;釀造清酒或燒酎時需要利用麴 來將穀物中的澱粉分解為糖。如此一來,酵母菌才能將各種原料分 解出來的葡萄糖等醣類再發酵成酒精。不過,酒精發酵的產物不只 酒精而已,還包含各式各樣的物質。而所有酵母菌製造出來的物質 都會原原本本地留在清酒、啤酒、葡萄酒等釀造酒的酒液中,直接 影響酒的品質。

另外,溫度也會影響酵母菌進行酒精發酵的效率。一般而言, 溫度愈高愈旺盛,溫度愈低愈緩慢。而酒精發酵的效率會影響到酒 的品質與發酵時間。所以,各種酒的發酵溫度與時間是一定的。 P.16~17歸納整理了釀造酒中的清酒、啤酒、葡萄酒的製造方式, 以及下一節即將介紹的蒸餾酒的釀造資料,請讀者參考、比較。

什麼是蒸餾酒?

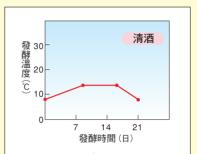
蒸餾酒和釀造酒的不同之處,在於蒸餾酒在發酵後還需要「蒸餾」程序。例如啤酒和麥芽威士忌同樣都以麥子做原料,製程卻不相同。啤酒是在發酵以後,經過熟成和過濾程序,就可以釀製而成。而麥芽威士忌在糖化、過濾、發酵以後,還需要蒸餾程序。所以說,即使原料同樣是麥子,製造程序不同,所釀成的酒的種類也

酵母菌


形狀: 有橢圓形等多種形狀

釀酒主要利用的是啤酒酵母菌(Saccharomyces cerevisiae)。 Saccharomyces從希臘文的「糖」與「菌」而來;cerevisiae是拉丁文的 「啤酒」的意思。

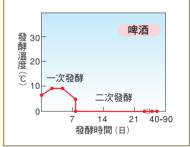
酵母菌與麴菌的功用(以清酒為例)



清酒

稻米中的澱粉在麴菌的作用下,逐漸分解成醣類,再由酵母菌發酵生成酒精。平衡醣和酒精的生成速率是調和香味的關鍵。例如清酒就將發酵溫度控制在10~20℃之間;發酵時間控制在三週;酒精濃度控制在18~20%之間。

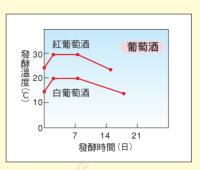
開放式發酵槽


清酒醪(註:醪是進行發酵過程的物料。)

啤酒

多數日本啤酒是以麥芽與啤酒花製成麥汁, 先在5~10℃下進行七至十天的主發酵,讓 麥汁中絕大部份的醣分轉換成酒精,再讓主 發酵後的未成熟啤酒在0~3℃下進行一至 三個月的次發酵,揮發未成熟的香氣,整合 香味,然後溶入二氧化碳,使啤酒具有發泡 的特性。酒精濃度約5~6%。

耐壓發酵槽



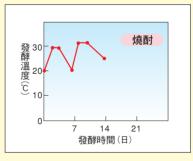
啤酒醪呈泡沫狀,看起來好像積雨雲

葡萄酒

紅葡萄酒:選用黑色系葡萄。用碾破且帶果肉和種子的葡萄,在25~30℃的稍高溫度下發酵七至十天,等果皮和種子的色素釋放出來以後除去果皮和種子,繼續發酵約一週釀製而成。

白葡萄酒:選用綠色系葡萄。用葡萄汁在 15~20℃的稍低溫度下發酵二至三週釀製而成。紅、白葡萄酒的酒精濃度約10~13%。

紅葡萄酒醪


白葡萄酒醪

燒酎(日本各地所生產蒸餾酒的總稱)

在較高溫度中讓酒精發酵旺盛進行,使 米、麥、甘藷等原料發酵成酒精。先在酒 麴中添加酵母菌,放置在20~30℃下發酵 約一週,再加入米、麥、甘藷等原料,放 置在25~32℃下正式發酵約一至二週,然 後以蒸餾方式收取酒液。

密閉型發酵槽

稻米燒酎醪

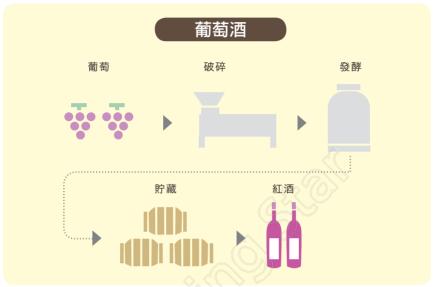
就不同。又例如葡萄酒和白蘭地,原料同樣是葡萄,差別就在釀製 過程中有沒有加入蒸餾程序。可以這麼說,啤酒經蒸餾即成威士 忌;葡萄酒經蒸餾即成白蘭地。總歸一句,蒸餾酒是釀造酒的衍生 產物。

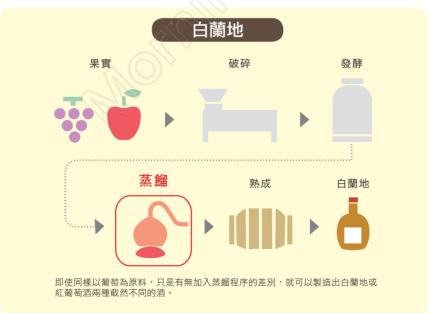
製造蒸餾酒,少不了「蒸餾機」。蒸餾機的相關記錄,最早可以追溯到西元前384~322年、古希臘哲學家亞里斯多德所記載的文獻中。亞里斯多德指出,酒由水和土這兩要素所構成;利用蒸餾方式,可以單純將其中的水元素分離出來,留下酒的精華——土元素。這就是亞里斯多德所留下,從葡萄酒中蒸餾製得白蘭地的記錄。

至於蒸餾技術是怎麼流傳世界的?說來諷刺,這得感謝亞歷 山大大帝征戰世界各地。蒸餾技術隨著戰役流傳到世界各地,東達 印度河,西至大西洋。蒸餾技術經過中世紀煉金士的改進後更為精 進,到了大航海時代時更結合當地原料,除了先前提到的威士忌和 白蘭地以外,更發展出多種酒款,例如巴西的甘蔗酒,以及印度到 東南亞各地以當地原料製成的蒸餾酒。

亞洲地區的蒸餾酒,據說發源自中國的雲南一帶。臨接雲南的國家,例如越南、寮國、緬甸,則有和日本燒酎相似的蒸餾酒。

本書第二篇將以清酒、燒酎、啤酒、葡萄酒、威士忌、白蘭地等為例,介紹世界各地的酒的特徵與製造方法。


啤酒和麥芽威士忌的製造差異



葡萄酒和白蘭地的製造差異

第二篇酒的基礎知識

- 酒是總稱,
- 涵蓋了清酒、燒酎、啤酒、
- 葡萄酒、威士忌等各種類別。
- 各種酒有其專屬的製造方法。
- 本篇將介紹各種酒的歷史與製造方法。

清酒是什麼樣的酒?

清酒是傳統的日本酒,以主食稻米釀製而成,與日本人民生活 深刻連結,形成獨特的飲食文化。清酒的釀造原理非常複雜,所幸 今日的科學已能解析。今日的科學知識和釀酒師的技術,都是創造 高品質且富多樣性清酒的原動力。

對我們而言,生活有清酒相伴是很理所當然的事情。不過如果 能多了解清酒有趣的地方,今晚的清酒應該會別有風味!

清酒的歷史

有關清酒出現的時代,歷史並無清楚記載。一般推論,自水稻進入日本的彌生時代起,日本就開始利用稻米製麴釀酒。律令時代(註:約西元七世紀後半至十世紀),稻穫穩定,國家設立造酒司,以米釀酒。民間的釀酒風氣則是從室町時代(註:西元1336~1537年)開始盛行。根據史料記載,從十六世紀後半期起,利用諸白法(註:米麴、蒸米皆採用精製白米),濾除酒粕,收取透明酒液實施低溫滅菌製成的諸白酒,應該是清酒的原型。

日本各地的清酒

全日本約有2056家清酒釀造廠。除了鹿兒島縣,北從北海道,南至沖繩縣的各都道府縣都有釀製清酒。過去,白牆建築是酒莊的象徵。不過最近,也有酒莊採用近代建築。一般而言,酒莊從入秋以後開始釀酒,期間歷經隆冬,到春陽降臨時結束。不過也有部分酒莊終年釀酒。從以前開始,酒莊會在新酒釀成以後,在屋簷懸吊「酒林」(杉葉球),向愛酒人士宣告新酒已經釀成。因此,酒林也成為酒莊的象徵。

有些酒莊的酒窖是對外開放的,讀者不妨前往參觀。

日本是清酒的產地

蒸米產生的白色蒸氣自酒莊的煙囪裊裊 升起。

懸吊在酒莊屋簷的酒林,宣告新酒已 經釀成。

清酒的製造方法

清酒的原料是稻米。由於糙米糠含有脂肪、礦物質以及大量的蛋白質會破壞清酒的風味,所以清酒只取碾白除糠後的精製白米釀製。一般是將糙米削去1/3的外層,只留取2/3的中心部分作為使用。削去的比例這麼多的確很浪費,但這是為了釀造香醇好喝的清酒才研究出來的作法,尤其吟釀等級的清酒,碾除不用的比例更是高達2/3。(註:白米碾除後剩餘的比例又稱精米程度或精米步合;精米程度60%,表示米有40%被削除。)

接下來的作業是清洗精米,去除殘存的米糠,然後浸米,讓米 粒吸收水分。米粒的吸水量到達本身的1/3重左右時,就要把米從 水中瀝起,放入蒸籠中準備蒸米。蒸出來的米粒會比煮出來的米粒 硬許多。之所以採用蒸米,是因為像煮飯那樣煮出來的米粒太軟、 太黏,不適合釀造清酒。(註:蒸米的作用在於將白米的澱粉轉變 成麴菌可分解的形態,以形成米麴。)

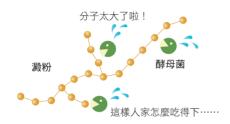
酒精發酵作用是由清酒酵母菌發起的。酵母菌是體積約5~8微米(1微米=0.001公釐)的微小生物,繁殖的速度很快;在良好條件下,二至三小時就可增殖一倍。首先,將酵母菌(酒母)和清潔的水置入發酵槽,再倒入冷卻過的蒸米,然後攪拌均匀。這之後就可以輕鬆等待清酒釀成了嗎?不,釀清酒哪有這麼輕鬆。單單這樣是沒有辦法引起酒精發酵的。釀造清酒必須把蒸米的澱粉發酵成酒精。可是澱粉是由數十到數十萬個葡萄糖聚合而成,對酵母菌而言太過巨大,無法分解、利用,當然沒有辦法直接進行酒精發酵。

所以蒸米後,接下來由「麴菌」先登場。麴菌在釀製醬油或味噌時也會用到,是有益的黴菌。首先,將麴菌的孢子均匀灑在蒸米上。不久以後孢子就會發芽,長出菌絲。大約二天,麴菌就能完全覆蓋蒸米的表面。長了麴菌的蒸米稱為「米麴」。麴菌在生長時,會製造稱為酵素的蛋白質,並將它貯存在米麴中。酵素的作用有如

清酒的製造程序:精米與蒸米

上圖:自動精米機。電腦輸入了釀酒 師的專業經驗,能自動將釀酒用米碾 成精米。

左圖:左起依序為糙米、碾除量達 1/3的白米、碾除量達2/3的白米。精 米作業需要一至四天,時間長短依碾 除程度而異。


橫臥式連續蒸米機。藉由輸送帶運送, 一邊移動米粒,一邊將米粒蒸熟。

傳統蒸籠,大約一小時就可以把米蒸好。

澱粉和酵母菌的關係

大約二天時間,麴菌就能覆滿米粒的表面。有麴菌生長的部分呈亮白色,裡面貯 存了能分解澱粉的酵素。

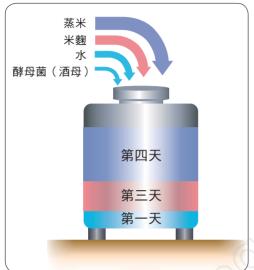
在米麴的酵素的作用之下,蒸 米的澱粉已經分解成小分子, 而且變成液狀(右燒杯)。 左燒杯不含米麴。

剪刀,能將大分子的澱粉分解成小分子的醣。人類無法用肉眼觀察 酵素的作用情形,可是酵素的機能對釀酒卻是十分重要。我們自己 將米飯和熱水混入米麴中,保溫在50℃左右存放一段時間以後,可 以製成甜酒釀,就是這個原理。

麴菌是黴菌,喜歡溫暖的環境。所以酒莊會在酒窖內闢一間溫室(麴菌室),以製造麴菌。

清酒的秘訣:「三段式投料製醪法」與「低溫發酵」

接下來要把蒸米、米麴和水,依照77:23:130的比例投入發酵槽中。但是不能一次投入所有的量,必須在四天內分三批投入。


第一天投入1/6左右;第二天不投入,目的是促進酵母菌繁殖;第三天投入2/6左右;第四天投入餘量。如此將原料分三批次投入發酵槽製醪的方法,稱為「三段式投料製醪法」(P.28圖示;酒醪:釀酒過程中混合在發酵槽內,自發酵起至發酵完成之液態物料)。由於酵母菌的密度必須達到一定程度,才能順利引起酒精發酵。如果一次便將所有原料投入,會使酵母菌的密度過低,延長酒精發酵前的酵母菌繁殖期,造成雜菌趁隙繁殖,影響清酒風味。

三段式投料製醪法是先人的智慧結晶。如果以總納米量論單一 發酵槽的規模,小規模的槽約可容納一公噸以下,大規模的槽約可 容納十公噸以上的米。

清酒適合低溫發酵。原因是低溫可以把酵母菌的活動控制得恰到好處,讓酒精發酵充分進行,釀製出口感細緻的清酒。發酵溫度一般控制在8~18℃。發酵期間約三星期便可結束,發酵結束後的酒精濃度約18~20%。發酵結束後的酒醅(註:已發酵完畢等待蒸餾或過濾之固態物料。)榨除酒粕(註:酒粕指由酒醅榨除酒成分後的殘渣)去除酵母菌等物質,就能得到芳香甘醇的清酒。

三段式投料製醅法

右上圖:釀酒師在溫控約30℃的 溫暖麴菌室中為蒸米接種麴菌孢 子。這項作業需要纖細、敏銳的 神經。接種麴菌以後,還必須嚴 格控制溫度,才能製造出米麴。 右下圖: 箱麴法。

左圖:發酵中的清酒醪。每ml的 清酒醪約含一億隻酵母菌,能迅 速將葡萄糖轉換成酒精與二氧化 碳。

剛榨出的新酒。

熟成的效用

新酒的香氣非常清新,所以有少部分清酒會以新酒形態售出。 但是,大部分清酒會在低溫滅菌後進窖貯藏,等香氣和口感穩定以 後才出售。在秋天生裝售出的清酒,稱為「冷卸」清酒。在貯藏期 間,清酒中的糖分和胺基酸會產生反應使酒液逐漸變黃,並釋放出 熟成的香氣,口感也會愈趨柔順,呈現與新酒截然不同的風貌,而 有其特有的豐富韻味。因此近來,標榜經過數年以上長期貯藏、熟 成的陳年清酒也發展成為商品,而且種類多樣,從吟釀類型到口感 濃重類型的陳年清酒都有。

清酒釀造與水

潔淨的水質是釀造清酒的必備條件。釀造清酒的用水量大約是 白米用量的十倍。除了洗米、製醪,調整原酒的酒精濃度要用水,清洗器具也要用水。好喝又好釀酒的水是釀造清酒的重要條件。

水裡面的某些成分對釀造清酒而言是不受歡迎的,例如鐵質。 鐵質是人體血液中血紅素的重要成分,是人體不可或缺的金屬礦物 質。然而對清酒而言,鐵質不但會使酒液變成赤褐色,還會破壞香 氣。法規規定自來水的鐵質含量必須在0.3ppm以下;而釀清酒用水 對鐵質含量的要求更為嚴格,是自來水標準的1/10以下。

知名的水源地多有酒莊設立。例如清酒的兩大產地: 灘與伏 見,就是榮獲環境廳公告為百大名水的優良水源地。

灘的宮水

江戶時代後期,在魚崎(神戶市)和西宮(西宮市)兩處都 有酒莊的山邑太左衛門發覺西宮酒莊的酒質特別好,便決定追查原 因。起初命令釀酒師更換釀酒器具,卻不見效果。直到天保11年

清酒色澤會因熟成程度而有變化。最右邊為26年份的貯藏酒。

(1840年),把西宮的水運給魚崎的酒莊使用以後,魚崎那邊的酒質才獲得提升。原來,六甲山脈的降雨變成夙川的伏流,集中在西宮神社附近湧出的水就是讓清酒好喝的祕密。山邑太左衛門的研究精神實在教人敬佩。此後,神戶市灘地區的酒莊全改用西宮的水釀酒。而西宮的水也逐漸被簡稱為「宮水」。

宮水之所以被譽為釀酒名水,是因 為日本的水以軟水(譯註:鈣、鎂等礦 物質含量低,硬度在十度以下的水)居

西宫市内宫水發源地與紀念碑。

多,然而宮水富含鈣、磷、鉀、氯等礦物質,卻又極少會造成酒液 偏黃與酒質劣化的鐵質。宮水產地的地底花崗岩層的砂岩層含有大 量的貝殼,作用相當於淨水廠的濾砂,能濾除雜質,又有適度補充 礦物質的效果。

實地造訪宮水的水井便可發現,清澈的水自離地算淺(約四公 尺深)的井口汩出。剛喝下口時,口感溫順;喝到喉頭時,可以感 受到水的勁力,口感類似「灘酒」。過去,宮水是傳說中的好水; 如今,宮水仍然是支撐灘區釀酒事業的珍貴水資源。

晨星網路書店看更多▶

適合釀酒的水質條件

色澤	透明無色
氣味	無異常
酸鹼值	中性或弱鹼性
鐵、錳含量	0.02ppm以下
有機質含量	5.0ppm以下
亞硝酸鹽氮含量	無檢出
氨氮含量	無檢出
細菌酸度	0.5ml以下
生酸菌群、大腸菌群	無檢出。公文《〇》

宫水水質成分分析值

	魚崎	西宮	伏見的御香水	東村山淨水場 (天然水)	
酸鹼值	6.9	7.1	6.4	7.8	
鈣含量	29	51	8.4	-	
鎂含量	3.5	7.3	5.5	-	
硬度	87	157	44	46	
鈉含量	11	25	11	3.2	
鉀含量	2.8	9.8	1.9	-	
氯含量	10	35	7.3	3.7	
磷酸含量	0.3	4.4	-	0.0	
鐵含量	< 0.005	< 0.005	-	0.19	

單位:除酸鹼值以外,單位皆為mg/l。